梅森质数
梅森素数编选法
根据素数作为因子数在2^N-1数列中的分布规律而编选梅森素数。
一在2^N-1平方根以内没有奇素数的,这个指数的数就是梅森素数,后面的指数能被这个梅森素数整除的都有这个梅森素数的因子,周期重复的都编上这个因子数。
二在2^N-1数列中N是合数的,2^N-1是由前面素因子和新增的因子数组成,只要除去前面的因子数就能得到新的因子数,新的因子数也以这个指数为周期重复出现,并在后面重复的数编上这个因子数。
三指数是素数的,剩下的因子素数根据减1能被指数整除来选合,选合后并在后面的周期重复的数编上这些因子数;剩下的因子素数在2^N-1平方根以内选完后,还有梅森数空着,这个梅森数就是梅森素数,并在后面周期重复的数编上为些因子数。
根据以上的方法操作如下:
把2^n-1的指数都展开,从2开始编下去。
指数2的数值是3,3的平方根内没有奇素数,所以它是梅森素数,凡是指数能被2整除的都有3的因子数,后面以2为周期编上因子数3;
指数3的数值是7,7的平方根内没有奇素数,所以它也是梅森素数;凡是指数能被3整除的都有7的因子数,以3为周期编上因子数7;
指数4数值是15,4能被2整除所以有3的因子数,15除以3等于5,5是新出现的因子数,凡是指数能被4整除的,都有5的因子数,后面以4为周期编上因子数5;
指数是5数值是31,31的平方根以内只有3和5两个奇素数,3和5已是指数2和4的因子数了,所以这个梅森数是梅森素数,凡是指数能被5整除的,都有31的因子数,后面以5为周期编上因子数31;
指数6数值是63,6比较特别,凡是指数能被6整除的都会再增一个3的因子数,它是唯一一个不会新增其他因子数的数,后面以6为周期再编上一个因子数3;
指数7数值是127,127的平方根以内只有奇素数11还没有用上(实际以后都会用上的),11减1不能被7整除,所以127也是梅森素数,凡是指数能被7整除的都有127的因子数,后面以7为周期编上因子数127;
指数8数值是255,增加了17的因子数,凡是指数能被8整除的都有17的因子数,后面以8为周期编上因子数17;
指数9数值是511,新增73的因子数,凡是指数能被9整除的都有73的因子数,后面以9为周期编上因子数73;
指数10数值是1023,新增11的因子数,凡是指数能被10整除的都有11的因子数,后面以10为周期编上因子数11;
指数11数值是2047,2047的平方根内还有43,41,37,29,23,19,13等奇素数(只要往后多编一些,留下的数就更少了),只要将这几个数都减去1,那一个数被11整除,只有23-1能被11整除,2047/23=89,23和89是它的因子数,两个因子数都是新增加的,因为它是梅森合数,凡是指数能被11整除的都有23和89的因子数,后面以11为周期编上因子数23和89; 指数12数值是4095,已有的因子数3*7*5*3,新的因子数是13,凡是后面指能被12整除的,都编上因子数13。
指数13数值是8191,8191的平方根内还有83,79,73,71,67,61,59,53,47,43,41,29,19等素数,其中只有79-1能被13整除,用79试除也是不行,所以8191也梅森素数。
一直编下去,每一个指数至少都会新增一个素数的因子数,不是梅森素数和梅森合数的因子数都能编选出来,没有选到的就是梅森合数的因子数和梅森素数。
编梅森数时,根据素数减1能被指数整除的定理,从剩下素数中选合。
2^N-1的平方根以内的素数都被因子数选完,留下就是梅森素数了。
梅森素数的近似计算公式:
3*5/3.8*7/5.8*11/9.8*13/11.8*......*P/(P-1.2)-1=M
P是梅森数的指数,M是P以下的梅森素数的个数。
以下是计算的数值与实际数的情况:
指数5,计算2.947,实际3,误差0.053;
指数7,计算3.764,实际4,误差0.236;
指数13,计算4.891,实际5,误差0.109;
指数17,计算5.339,实际6,误差0.661;
指数19,计算5.766,实际7,误差1.234;
指数31,计算6.746,实际8,误差1.254;
指数61,计算8.445,实际9,误差0.555;
指数89,计算9.201,实际10,误差0.799;
指数107,计算9.697,实际11,误差1.303;
指数127,计算10.036,实际12,误差1.964;
指数521,计算13.818,实际13,误差-0.818;
指数607,计算14.259,实际14,误差-0.259;
指数1279,计算16.306,实际15,误差-1.306;
指数2203,计算17.573,实际16,误差-1.573;
指数2281,计算17.941,实际17,误差-0.941;
所有的奇素数都是准梅森数(2^N-1)的因子数,则梅森合数的因子数是只有素数中的一部份。
在2^N-1的数列中,一个素数作为素因子第一次出现在指数N的数中,这个素数作为因子数在2^N-1数列中就以N为周期出现。在这种数列中指数是偶数的都等于3乘以四倍金字塔数。
在2^N-1数列中,指数大于6的,除梅森素数外,都有新增一个或一个以上的素数为因子数,新增的因子数减1能被这个指数整除。
一个梅森合数的因子数只有唯一一次出现在一个梅森合数中。
一个是梅森素数的素数,它永远不是梅森合数的因子数。
一个是前面的梅森合数的因子数,它永远不会是后面的梅森合数的因子数。
所有梅森合数的数因子减1都能被这个梅森合数的指数整除,商是偶数。
一个素数在不是梅森合数的准梅森数中第一次以因子数出现,这个素数减1能被这个准梅森数的指数整除,商不一定是偶数。
梅森素数都在[4^(1-1)+4^(2-1)+4^(3-1)+......+4^(n-1)]*6+1数列中,括符里种数暂叫四倍金字塔数。
凡是一个素数是四倍金字塔数的因子数,以后就不是梅森合数的因子数。
在4^(1-1)+4^(2-1)+4^(3-1)+......+4^(n-1)数列中的数,有不等于6NM+-(N+M)的数乘以6加上1都是梅森素数。
在2^P-1平方根以下的素数都以素因子在以前准梅森数中出现了,那这个梅森数必是梅森素数。但它的逆定理是不成立的。如果还没有出现在以前的准梅森数中的素数,它也不定是梅森合数的因子数。 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:当2-1中的p是质数时,2-1是质数。他验算出:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2-1是质数。p=2,3,5,7时,2-1都是素数,但p=11时,所得2,047=23×89却不是素数。 梅森去世250年后,美国数学家科尔证明,2-1=193,707,721×761,838,257,287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得杂乱无章,也给人们寻找质数规律造成了困难。
迄今为止,人类仅发现49个梅森质数。美国中央密苏里大学于2016年1月7日发现的质数,为迄今发现的最大质数,同时是一个梅森质数。由于这种质数珍奇而迷人,它被人们称为“数学珍宝”。值得一提的是,中国数学家和语言学家周海中根据已知的梅森质数及其排列,巧妙地运用联系观察法和不完全归纳法,于1992年正式提出了梅森素质分布的猜想,这一重要猜想被国际上称为“周氏猜测”。 (GIMPS)项目于2016年1月7日找到人类已知的最大素数2-1,该素数有22,338,618位,是第49个梅森素数。 2017年12月26日,美国田纳西州日耳曼敦的GIMPS志愿者乔纳森·佩斯(JonathanPace)发现了第50个梅森素数277232917-1。这个超大素数有23249425位数,再次刷新了已知最大素数纪录。新的纪录是M82589933,由美国佛罗里达州奥卡拉的帕特里克·罗什在2018年12月7日发现。